Resource Allocation and Computation Offloading for Multi-Access Edge Computing With Fronthaul and Backhaul Constraints

نویسندگان

چکیده

Edge computing is able to provide proximity solutions for the future wireless network accommodate different types of devices with various service demands. Meanwhile, in order ubiquitous connectivities massive over a relatively large area, densely deploying remote radio head (RRH) considered as cost-efficient solution. In this work, we consider vertical and heterogeneous multi-access edge system. system, RRHs are deployed providing access users node capability can process computation requests from users. With objective minimize total energy consumption processing task, joint resource allocation offloading decision optimization problem presented under explicit consideration capacity constraints fronthaul backhaul links. Due non-convexity formulated problem, divide original into several sub-problems address them accordingly find optimal Extensive simulation studies conducted illustrated evaluate advantages proposed scheme.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latency Optimization for Resource Allocation in Mobile-Edge Computation Offloading

By offloading intensive computation tasks to the edge cloud located at the cellular base stations, mobile-edge computation offloading (MECO) has been regarded as a promising means to accomplish the ambitious millisecond-scale end-to-end latency requirement of the fifth-generation networks. In this paper, we investigate the latency-minimization problem in a multi-user time-division multiple acce...

متن کامل

Decentralized Computation Offloading and Resource Allocation in Heterogeneous Networks with Mobile Edge Computing

We consider a heterogeneous network with mobile edge computing, where a user can offload its computation to one among multiple servers. In particular, we minimize the system-wide computation overhead by jointly optimizing the individual computation decisions, transmit power of the users, and computation resource at the servers. The crux of the problem lies in the combinatorial nature of multi-u...

متن کامل

Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks

Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobil...

متن کامل

Resource Sharing of a Computing Access Point for Multi-user Mobile Cloud Offloading with Delay Constraints

We consider a mobile cloud computing system with multiple users, a remote cloud server, and a computing access point (CAP). The CAP serves both as the network access gateway and a computation service provider to the mobile users. It can either process the received tasks from mobile users or offload them to the cloud. We jointly optimize the offloading decisions of all users, together with the a...

متن کامل

An Edge Computing Empowered Radio Access Network With UAV-Mounted FSO Fronthaul and Backhaul: Key Challenges and Approaches

One promising approach to address the supply-demand mismatch between the terrestrial infrastructure and the temporary and/or unexpected traffic demands is to leverage the unmanned aerial vehicle (UAV) technologies. Motivated by the recent advancement of UAV technologies and retromodulator based free space optical communication, we propose a novel edge-computing empowered radio access network ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Vehicular Technology

سال: 2021

ISSN: ['0018-9545', '1939-9359']

DOI: https://doi.org/10.1109/tvt.2021.3090246